Toroidal Embeddings of Right Groups

نویسندگان

  • Kolja Knauer
  • Ulrich Knauer
چکیده

In this note we study embeddings of Cayley graphs of right groups on surfaces. We characterize those right groups which have a toroidal but no planar Cayley graph, such that the generating system of the right group has a minimal generating system of the group as a factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the flexibility of toroidal embeddings

Two embeddings Ψ1 and Ψ2 of a graph G in a surface Σ are equivalent if there is a homeomorphism of Σ to itself carrying Ψ1 to Ψ2. In this paper, we classify the flexibility of embeddings in the torus with representativity at least 4. We show that if a graph G has an embedding Ψ in the torus with representativity at least 4, then one of the following holds: (i) Ψ is the unique embedding of G in ...

متن کامل

Toroidal embeddings of abstractly planar graphs are knotted or linked

We give explicit deformations of embeddings of abstractly planar graphs that lie on the standard torus T 2 ⊂ R3 and that contain neither a nontrivial knot nor a nonsplit link into the plane. It follows that ravels do not embed on the torus. Our results provide general insight into properties of molecules that are synthesized on a torus.

متن کامل

On Embeddings of Circulant Graphs

A circulant of order n is a Cayley graph for the cyclic group Zn, and as such, admits a transitive action of Zn on its vertices. This paper concerns 2-cell embeddings of connected circulants on closed orientable surfaces. Embeddings on the sphere (the planar case) were classified by Heuberger (2003), and by a theorem of Thomassen (1991), there are only finitely many vertex-transitive graphs wit...

متن کامل

Separating Cycles in Doubly Toroidal Embeddings

We show that every 4-representative graph embedding in the double torus contains a noncontractible cycle which separates the surface into two pieces. This improves a result of Zha and Zhao for general orientable surfaces, in which the same conclusion holds for 6-representative graph embeddings. Noncontractible separating cycles have been studied because they provide a way to do induction on the...

متن کامل

Spanning subsets of toroidal and Klein bottle embeddings

Let Φ be an embedding of graph G in a surface S. If there exists a subset K of S bounded by a subgraph of G which contains all the vertices of G, then K is called a spanning subset of Φ. Examples of spanning subsets include spanning discs, spanning annuli with some number of holes (called planarizing sets in some papers). A spanning subset may provide a simpler structure but still contain enoug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009